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Abstract: Multiplexed fluorescence microscopy imaging is widely used in biomedical applica-
tions. However, simultaneous imaging of multiple fluorophores can result in spectral leaks and
overlapping, which greatly degrades image quality and subsequent analysis. Existing popular
spectral unmixing methods are mainly based on computational intensive linear models, and
the performance is heavily dependent on the reference spectra, which may greatly preclude its
further applications. In this paper, we propose a deep learning-based blindly spectral unmixing
method, termed AutoUnmix, to imitate the physical spectral mixing process. A transfer learning
framework is further devised to allow our AutoUnmix to adapt to a variety of imaging systems
without retraining the network. Our proposed method has demonstrated real-time unmixing
capabilities, surpassing existing methods by up to 100-fold in terms of unmixing speed. We
further validate the reconstruction performance on both synthetic datasets and biological samples.
The unmixing results of AutoUnmix achieve the highest SSIM of 0.99 in both three- and four-color
imaging, with nearly up to 20% higher than other popular unmixing methods. For experiments
where spectral profiles and morphology are akin to simulated data, our method realizes the
quantitative performance demonstrated above. Due to the desirable property of data independency
and superior blind unmixing performance, we believe AutoUnmix is a powerful tool for studying
the interaction process of different organelles labeled by multiple fluorophores.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Fluorescence microscopy imaging is an essential tool in biomedical research to obtain cellular
tissue characteristics of samples. Labeling imaging samples with multiple fluorescent dyes may
result in spectral overlap between emission signals detected by distinct channels, leading to
cross-talk and blurring of signals, and thereby limiting the number of fluorophores that can be
employed simultaneously [1]. To address this problem, various spectral unmixing algorithms
have been developed for multispectral imaging to obtain the spectral features, and separate them
into corresponding image sets of individual dyes, thus outputting pure sample images.

To identify the individual fluorescent dyes of biomarkers and the corresponding ratios of each
pixel in each channel, researchers have proposed several spectral unmixing methods, which are
mainly divided into linear unmixing and non-linear unmixing. Based on the assumption of linear
mixing of emission fluorescence, various linear spectral unmixing methods usually require known
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emission spectral profiles of fluorophores. Linear unmixing [2] can be formulated as the inverse
problem of Y = AX, where Y , X, and A represent the mixed image, unmixed image, and mixing
matrix respectively. Although linear unmixing is employed widely in multi-color microscopy
imaging [3,4], the unmixing performance mainly relies on the quality of the calibrated emission
spectra and the mixing matrices. When the calibrated environment is not consistent with the
actual experimental environment, the measured emission spectra may be shifted significantly,
affecting the unmixing results greatly [5]. Additionally, traditional iterative optimization methods
to solve the inverse problem of linear unmixing suffer from heavy computational costs. To
improve computational efficiency, some researchers have proposed unmixing methods using
vertex component analysis (VCA) [6] and independent component analysis (ICA) [7]. Meanwhile,
based on the property that both the fluorescent intensity and the ratios of different channels are
non-negative, the non-negative matrix factorization (NMF) method [8,9] has been proposed to
solve the inverse problem.

In order to solve the problem of requiring prior spectral information and low computational
efficiency, many non-linear spectral unmixing methods have been proposed in recent years. Seo et
al. [10] design an information theory-based iterative optimization method by minimizing mutual
information between channels of mixed images to blindly unmix 15 colors without reference
spectra. With the wide spread of machine learning, related methods have been applied in the
field of fluorescent microscopy imaging. Some studies utilize support vector machine (SVM)
[11] to learn the pixel feature of fluorescent images and cluster them to realize spectral unmixing
and separation of cellular locations [12,13]. In addition, McRae et al. [14] propose Learning
Unsupervised Means of Spectra (LUMoS) without the need for prior measurements of their
emission spectra and constraints on the number of fluorophores that can be utilized. This work
uses K-Means to learn the spectral characteristics of individual fluorophores from mixed images
to achieve blind spectral unmixing. However, the latter two machine learning methods require
hand-craft iterating parameters and the settings of hyperparameters may impact the final effects
of unmixing. Besides, methods based on phasor analysis [15] show some advantages in this
regard. Cutrale et al. [16] develop a spectral phasor unmixing algorithm that employed Fourier
transform to map spectral images to a two-dimension plane and perform spectral unmixing with
clustering methods. Furthermore, Gratton et al. [17] realize good performance in fluorescent
lifetime imaging with spectral phasor analysis. However, these phasor-based nonlinear unmixing
methods are still dependent on the performance of clustering methods such as K-Means, though
they are analytically easy and computationally fast in phase space.

In recent years, some studies have turned to the use of deep learning for fluorescence microscopy
to achieve spectral unmixing. These works use data-driven methods to extract the features of
emission spectra instead of utilizing prior emission spectra directly and have advantages of noise
insensitivity and good generalization performance. Smith et al. [18] combine 3-D convolution
and Xception [19] architecture to propose a multi-layer network for the unmixing of fluorescence
lifetime imaging. Their network is trained on synthetic datasets and achieves better unmixing
results in vivo imaging than that of iterative fitting methods. Li et al. [20] incorporate the
physical process of multi-color fluorescence imaging into the spectral unmixing framework which
couples several generator networks to recover the pure images. Manifold et al. [21] propose an
UwU-Net model based on classical U-Net and demonstrate impressive unmixing performance
for hyperspectral imaging, mass spectrometry imaging, and Raman scattering imaging. Overall,
the deep learning methods have the potential to solve the problems of the prior emission spectra
requirement and high computational load in spectral unmixing.

Here, we propose an autoencoder-based fast asymmetric spectral unmixing method (AutoUn-
mix), which can blindly separate mixed images without reference spectra. Compared with the
previous methods that focus on only the spectral unmixing process, our proposed method lever-
ages the physical process of both spectral unmixing and mixing into two networks respectively.
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Specifically, for the unmixing process in actual microscopy imaging, we design a spectral learning
module to learn the mutual information features between channels and a spatial learning module
to extract morphological features. In addition, we employ a U-Net [22] to extract the features of
spectral mixing process to further help reconstruct unmixed images accurately. In experiments,
we validate that AutoUnmix can separate highly mixed images precisely in around 100ms after
training the model on simulated datasets. In addition, a new transfer learning framework is
also proposed to further improve the image quality of spectral unmixing by fine-tuning network
parameters for the case of real images. On the real-acquired images of mouse cell samples and
mouse brain slice samples, we demonstrate that our method has great unmixing reconstruction
performance and good generalization. More importantly, AutoUnmix solves the problem that
ground truth is not available for the real multi-color fluorescence imaging system and can be
applied to different microscopic imaging systems without retraining, thus reducing training cost
and improving unmixing efficiency.

2. Materials and methods

2.1. Overview of the workflow

We propose a supervised asymmetric autoencoder unmixing network (AutoUnmix) to learn the
spectral characteristics of each fluorophore, correct the fluorescent crosstalk from other channels,
and output pure images that only contain the corresponding labeled samples for each channel.
The AutoUnmix contains the unmixing stage and the mixing stage to imitate the physical process
of spectral unmixing and mixing during imaging, as shown in Fig. 1(a). In the first stage, the
unmixing network learns the features of spectral unmixing by taking mixed images y as input
and outputting unmixed image x̂. A spectral learning module is employed with channel attention
mechanism to learn spectral features between channels and a U-Net is used to extract spatial
features. We concatenate and convolve all the generated feature maps in the reconstruction
module to obtain the final unmixed output. Then, in the mixing stage, the mixing network
extracts the spectral mixing features from the generated unmixed images. Since the physical
principle of spectral mixing is not complex, the mixing network adopts a vanilla U-Net to reduce
computational complexity and realize fast spectral mixing. Compared to the mixing stage, the
unmixing network is more sophisticated. This asymmetric model design helps our method
maintain the unmixing performance while reducing the computational cost of the entire model.

The unmixing network, as shown in the left part of Fig. 1(a), takes the mixed image y with
dimension (H, W, C) as input, where H and W denote the spatial size of y, and C denotes the
number of channels of y. We design a Spectral Learning Module (SLM) containing a convolution
and a Channel Attention Module (CAM) [23]. The operation of CAM can be formulated as:

CAM(feat) = MLP2(MLP1(AvgPooling(feat))) + feat, (1)

where feat denotes the high-dimension feature map, MLP1 containing a fully connected layer
maps the input of size 1 × 1 × Cfeat to size of 1 × 1 × Cfeat/16 and MLP2 is also a fully connected
layer performing the inverse operation of MLP1. The SLM sequentially selects each channel pair
i and j and generates the corresponding high-dimension feature maps as follows:

SLM(y(:, :, i), y(:, :, j)) = CAM(LeakyReLU(Conv(Concat(y(:, :, i), y(:, :, j))))), (2)

where y(:, :, i) and y(:, :, j) denote the corresponding channel i and j of mixed image y. Each feature
map extracted by SLM is then fed into a U-Net that shares parameters to reduce computational
cost to learn the spatial features. Finally, in the spectral reconstruction module, all of the U-Net
outputs are concatenated and convolved to obtain the unmixed image x̂, which can be expressed
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Fig. 1. Overview of training procedure and transfer learning procedure of AutoUnmix.
a. The training procedure of spectral unmixing model. In Unmixing Network, every two
channels of input mixed image are selected to extract spectral features by Convolution and
Channel Attention Module. A U-Net with shared parameters learns the spatial features in the
feature map and then the unmixed image is reconstructed by Recon Module. The backbone
of Mixing Network is a U-Net. b. The procedure of transfer learning. Mixed image is the
initial input. The loop consists of Unmixing Network and Mixing Network. The output from
the final loop is the unmixed image for real-acquired mixed images.

as:
x̂ = Conv(Concat(UNet(SLM(y(:, : i), y(:, :, j))), forall i ≠ j)), (3)

The mixing network, as shown in the right part of Fig. 1(a), takes the unmixed image x̂ generated
in the previous stage as input and employs a lightweight U-Net to recover the mixed image.

To ensure better reconstruction image quality, we reduce the difference between the output
unmixed image and ground truth while preserving the morphological structure of tissue cells. The
loss function during training includes Mean Squared Error (MSE) loss and Structural Similarity
Index Measure (SSIM) [24] loss, shown as follows,

Loss = αLxy + (1 − α)Lyx, (4)

Lxy = m.s.e(y, ŷ) + γ(1 − SSIM(y, ŷ)), (5)
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Lyx = m.s.e(x, x̂) + γ(1 − SSIM(x, x̂)), (6)

where m.s.e represents the MSE loss, Lxy is the loss term guiding the mixing network training and
Lyx is the loss term guiding the unmixing network training. α controls the relative importance
between Lxy and Lyx and it can be selected empirically. Here, we set it as 0.5.

Transfer learning framework. In Fig. 1(b), a transfer learning framework is designed for the
situation that it is impossible to obtain the spectral unmixing ground truth in real experiments.
Therefore, the input is the acquired mixed image y and the output is the generated unmixed
image x̂. The intermediate result is the mixed image ŷ reconstructed by x̂. The mixing stage
and unmixing stage are iteratively repeated to improve spectral unmixing quality. We design
our custom loss function by minimizing MSE and mutual information loss between every two
channels. This conforms to the independent and exclusive characteristics of the cell tissues
labeled with fluorescence dyes. The design of the loss function also enables us to adjust and
optimize the model for different real experimental environments based on the model trained on
simulated data, improving the generalization ability and ensuring high-quality spectral unmixing
in various situations.

The loss function in transfer learning is different from the one in the training with simulated
data. In addition to computing the MSE loss between the input and output mixed images, mutual
information loss [25] also needs to be computed.

Loss = βm.s.e(y, ŷ) + (1 − β)
∑︂
i,j

MI(x̂i, x̂j), (7)

where β represents the coefficient, and the latter term represents the loss calculating the mutual
information between every two channels and summing them up.

Network training and testing. The model used in this paper is trained on the simulated
datasets using randomly initialized parameters and optimized using our custom loss function
with stochastic gradient descent. Our proposed spectral unmixing framework utilizes the Adam
optimizer with the learning rate of 0.0002, the beta of 0.5 and 0.999, and is trained for 200 epochs.
The simulated datasets are split into training and testing sets in a 4:1 ratio. All the images are
cropped into a patch size of 256×256 and augmented using rotations and flips to enlarge training
sets. All the training and prediction are performed on a server running Ubuntu 18.04, equipped
with an Intel Xeon 4216 processor and Nvidia RTX 2080Ti GPU. On our machine, training the
3-channel and 4-channel unmixing model takes approximately 3 and 5 hours respectively, while
the prediction time for a single test image sized of 256×256 is around 100 milliseconds.

2.2. Metrics

Following the numerical evaluation methods proposed in the previous papers, the SSIM, PSNR
and MSE are used to evaluate the results of the spectral unmixing methods. The values of
the SSIM metrics are between 0 and 1. The higher SSIM and lower MSE values represent a
high-quality output result. MSE is a general objective evaluation index in measuring image
quality, while SSIM assures a high degree of structural consistency between output and ground
truth. The SSIM is defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ

2
x + σ

2
y + c1)

, (8)

where µx, µy and σ2
x , σ2

y are the averages and variances of images x, y; σxy is the covariance of x
and y; c1, c2 are the variables used to stabilize the division with a small denominator. We also
use PSNR to measure the ratio between the maximum possible power of a signal and the power
of corrupting noise that affects the fidelity of its representation. The higher PSNR represents
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better image reconstruction quality. PNSR is defined as follows based on MSE:

PSNR(x, y) = 10 log10
MAX2

x
MSE

, (9)

where MSE is the mean square error between image x and image y, MAXx is the maximum
possible gray-scale value of the image, which is 255 in our experiments.

2.3. Data acquisition

Simulated datasets. Although some existing methods can acquire images with as few spectral
crosstalk as possible, such methods involve tedious biological sample preparation process. Here,
we generate datasets with various fluorophores and spectra profiles to simulate different imaging
environments, which are then used for training and testing. After that, we apply the trained
model to unmixing tasks for real sample images. The generation procedure is shown in Fig. S8.
Firstly, we select 345 4-channel images of U-2 OS cells from the DULoc [26] dataset as ground
truth, which were obtained from the HPA [27] database and processed by the cell masks tool.
Each image has 9 cells and 4 channels, where each channel corresponds to protein, nucleus, ER,
and microtubule. Second, we select multiple fluorophore groups and download the reference
spectra curve of them from FPBase [28] database, including DAPI, AF488, CF488, AF532, and
so on. We also set the center wavelength and width of bandpass filters according to the selected
fluorophores. The intensity values of each channel for each pixel of the ground truth image are
mixed using linear mixing, and then additional Poisson noise is added to each channel to simulate
the shot noise.

Y = filter(AX + npossion), (10)

where Y represents generated mixed image, X is the original unmixed image, A is the mixing
matrix, npoisson is Poisson noise, and filter represents Gaussian filter and median filter. Images
are convolved with a Gaussian filter with a standard deviation of 0.5 and a 3×3 median filter to
represent the real-world diffusion effect to obtain mixed images. The purpose of this workflow is
to closely simulate the real conditions that biological samples often exhibit overlapping tissue
structures. The spatial dimensions of each synthesized image are 512×512, and 3- and 4-channel
images are generated, respectively.

Real biological sample acquisition. Real biological experiments were performed on mouse
cells stained with DAPI for nuclei, FITC for actin fibers, and MitoTracker Red for mitochondria.
Multicolor images (Fig. S8a) were obtained using a TIRF microscope, Nikon ECLIPSE Ti2-E.
The fluorophores were excited with three lasers at 405, 488, and 561nm, respectively. The size of
the acquired mixed images is 512×512×3. Then, we normalize each channel of the images to
facilitate the subsequent unmixing tasks. We also used 3-color (CF488, ATTO514, ATTO531)
and 4-color (CF488, ATTO488, ATTO514, ATTO532, Fig. S8a) fluorescence images of mouse
brain slices [10] to test the unmixing performance of our method on real samples that are not
consistent with the distribution of the training datasets.

3. Results

3.1. Unmixing performance on simulated datasets

We first compare AutoUnmix with linear unmixing [2] and LUMoS [14] in terms of unmixing
accuracy on the simulated datasets. To generate simulated data, we select three fluorophores
(DAPI, Alexa Fluor 488, MitoTracker Red) with emission spectra highly overlapped and choose
three bandpass filters (470/40, 520/40, 600/50nm) corresponding to the spectra peaks of selected
fluorophores (Fig. 2(a)). Then, 345 three-color labeled U-2 OS cell images are artificially
synthesized based on the above spectral curves. Each channel of the cell images corresponds to
protein, nucleus, and endoplasmic reticulum (ER), respectively. We randomly select 35 images
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to compare the unmixing performance of linear unmixing, LUMoS, and AutoUnmix (Ours).
Linear unmixing is performed according to the theoretical reference spectra (Fig. 2(a)), while
LUMoS does not need emission spectra to unmix images. We quantify the unmixing accuracy
by computing the SSIM, PSNR, and MSE between the output unmixed images and the ground
truth. Table 1 shows the quantitative evaluation of the unmixing results of the three methods on
the synthetic datasets. The performance of linear unmixing and LUMoS methods are closely
comparable, with average SSIM values of 0.92 and 0.91 respectively. However, linear unmixing
demonstrates significant variance, suggesting a lack of robustness in this approach. Our method
achieves an average SSIM of 0.99 on 35 mouse cell images of different shapes, with a small
variance, indicating our stable performance and the ability to learn the spectral features of mixed
images well. In addition, AutoUnmix completes unmixing within 60ms, which is up to 100 times
faster than the other two methods. Figure 2(c) shows the unmixing results of the three methods
and the ground truth. It is obvious that the unmixing performance of linear unmixing is poor, as
it cannot correctly unmix the images in channel 2 and channel 3, and even fails to unmix them
completely. In contrast, our method is almost identical to the ground truth. As shown in Fig. 2(d),
we measured the normalized intensity values along the white arrows in each channel, and our
method shows the highest consistency with the ground truth, while linear unmixing and LUMoS
do not.

Table 1. Quantitative comparisons of unmixing performance between the three methods

Methods MSE SSIM PSNR Time

Simulated Dataset with 3
Channels

Linear unmixing 0.0046±0.0014 0.92±0.015 23.6±1.3 815s

LUMoS 0.0028±0.00059 0.91±0.01 25.7±.9 8s

Ours 0.00039±0.00017 0.99±0.0052 34.5±1.6 60ms

Simulated Dataset with 4
Channels

Linear unmixing 0.0068±0.0015 0.78±0.033 22±0.94 817s

LUMoS 0.0067±0.002 0.82±0.025 22±1.3 9s

Ours 0.00077±0.00013 0.98±0.0035 31.2±0.7 90ms

Then, we validate the unmixing performance over four dyes highly spectral overlapped: CF488,
ATTO488, ATTO514, and ATTO532 (Fig. 2(b), bandpass filter of 515/10, 525/10, 535/10, and
555/10nm). A simulated dataset is generated using four-color labeled U-2 OS cell images with
each channel corresponding to protein, nucleus, ER, and microtubules. We still use part of the
simulated dataset for training and randomly select 35 mixed images for testing. Although the
fluorescence dyes have highly overlapping emission spectra, our method (Fig. 2(e)) still shows
good consistency with the ground truth, with an average SSIM of 0.987. In Fig. S1 and S2, we
also present the comparison of each channel image between these three unmixing methods as
well as the normalized intensity values along the white arrows. The quantified results in Table 1
demonstrate our AutoUnmix can successfully handle various fluorescence mixing situations with
fast computational speed.

3.2. Validation of blind spectral unmixing

We next validate the ability of AutoUnmix for blind spectral unmixing by choosing fluorophore
groups different from those used for training. Our experiments show that our AutoUnmix
can successfully separate mixed images with absolutely different emission spectra curves. We
select three groups of fluorophores. The emission spectra of the first group (CF488, ATTO514,
ATTO532) are similar to the previous four-channel simulated dataset, but it only has three highly
overlapped fluorophores. The second group (tagBFP, Cerulean, Citrine) is commonly used for
colorful cell imaging, where tagBFP is for nucleus, Cerulean is for cell membrane, and Citrine is
for mitochondria. The third group (CF633, Alexa647, CF660R, CF680R) is overlapped relatively
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Fig. 2. Comparison between linear unmixing, LUMoS and our methods. a. The
theoretical emission spectral curve of 3 fluorophores (CF488, ATTO514, ATTO532), and
the selection of bandpass filter. b. The emission spectra of the 4 fluorophores used in the
simulated dataset and the detection channels. c. The unmixed images of ground truth, linear
unmixing, LUMoS and ours. Each row represents channel 1, 2, and 3 respectively. d. From
top to bottom, normalized intensity values along the white arrows for channel 1, 2 and 3 in c.
e. Overlay of the results of 4-color unmixing, including the mixed image, ground truth, and
the output unmixed image.

balanced. The test datasets are generated based on the three groups of spectral curves (Fig. 3).
Following the testing routine in section 3.1, we directly use the model for 3-channel and 4-channel
unmixing trained in section 3.1 to test on the data of the corresponding number of channels. The
quantitative results on different combinations of fluorophores are shown in Table S1 and the
unmixed images are displayed in Fig. 3.

The statistics align with the experiment results in section 3.1. For all three groups, linear
unmixing and LUMoS both exhibit worse performance with SSIM below 0.95 and PSNR below
28. On the four-color unmixing task (Fig. 3(c)), linear unmixing and LUMoS achieve SSIM
values below 0.9 and PSNR values approximately at 22, a result that concurs with Table 1.
Conversely, our proposed AutoUnmix attains higher performance, demonstrating SSIM exceeding
0.97 and PSNR exceeding 30 on the generated three-channel mixed images, and SSIM 0.95 and
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Fig. 3. Reference spectra and blind unmixing results of different groups. Different
groups of theorectical spectral curve and corresponding bandpass filter. The overlayed
images of mixed, ground truth and our output in a (CF488, ATTO514, ATTO532), b (tagBFP,
Cerulean, Citrine) and c (CF633, Alexa647, CF660R, CF680R).

PSNR 28 for the mixed data of four fluorophores with a diminishment of SSIM by 0.02 and
PSNR by 3 compared to Table 1. Our method still shows superiority over the other two methods
for all three groups. We can see from the overlay outputs that AutoUnmix can separate the mixed
images and have good consistency with the ground truth (Fig. S4, S5, and S6 show each channel
of the comparison results). We also evaluate the unmixing results for the same sample image as
Fig. 3(a) generated with largely different ratios of fluorophore combinations in Fig. S3. Whatever
the degree of spectral overlapping, our method can still perform well in such tests. The results
above show that our AutoUnmix has impressive blind unmixing performance, indicating our
unmixing method enables correctly separating fluorescent dyes with distinct emission spectra
from training sets.

Comparing the quantitative and visual results of mixing network output (Fig. S9), we also find
that our network can actually learn the process of spectral mixing. AutoUnmix is capable of
acquiring knowledge regarding the mutual information of adjacent channels through the Spectral
Learning module, thus learning invariant spectral characteristics and establishing independence
from the training dataset (Table S2). We assume that our sequential combination of the mixing
network and unmixing network might possess the capability to discern the fundamental physical
mechanisms governing spectral mixing processes. Consequently, AutoUnmix may not require
retraining neural networks for different fluorescent dyes, reducing the heavy cost of re-training
while maintaining good unmixing results.
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3.3. Generalization performance on real biological samples

In real biological experiments, it is impossible to obtain the ground truth of spectral unmixing,
which imposes a great challenge to supervised deep learning methods. Here, we propose a
transfer learning framework (Fig. 1(b)) to remedy the absence of ground truth by applying
finetuning. First, we train a base model using the simulated datasets generated from reference
spectra of the same number of fluorophores. Then we initialize the parameters of AutoUnmix
with the base model and iteratively finetune the parameters on the real-acquired images to learn
the distribution gap between synthetic data and real data. The finetuning is stopped when the
MSE loss between input mixed image and output mixed image is smaller than a threshold. We
demonstrate the unmixing performance of our proposed method on three real biological samples.

We tested the mouse cell samples with DAPI, FITC and MitoTracker Red. The 3-channel
mixed images were obtained using a TIRF microscope. We employ the base model in section
3.1 where the spectral curve for training is quite similar to that of mouse cell samples and then
finetune the model on the real acquired mixed images. Figure 4(a) displays the original mixed
image, linear unmixing results, LUMoS results, and Ours. In channel 1, the nucleus structure
cannot be completely reconstructed by linear unmixing method, and LUMoS can maintain the
cell structure to some extent while losing some clear details. In channel 2, crosstalk from channel
1 is visible in the mixed image. Only our method can remove all nuclei while reducing the noise
signal in the image simultaneously. In channel 3, it can be seen that LUMoS is indeed able to
remove the crosstalk from channel 1 and 2, but destroys the mitochondrial structure. However,
our method can both maintain the mitochondrial structure and remove the crosstalk from the
nuclei, indicating that AutoUnmix can indeed separate real mixed images.

Next, we verify the unmixing quality of AutoUnmix on samples exhibiting different morphology.
Figure 4(b) displays the mixed images of mouse brain slices with highly overlapped spectra
(CF488, ATTO488, ATTO514, ATTO532), which shows quite different morphological structures
from training datasets. Compared with linear unmixing and LUMoS, AutoUnmix with transfer
learning can achieve better unmixing performance as shown in Fig. S7. Our method without
transfer learning cannot completely remove some of the cell structures that crosstalk into channel
1. In contrast, by employing transfer learning framework, more cell details can be recovered in
the white rectangle in Fig. 4(b), indicating that our transfer learning framework can significantly
improve the output quality.

We further test the proposed method for samples with different morphology and emission
spectra as shown in Fig. 4(c). The three fluorophores are CF488, ATTO514, and ATTO532.
We directly use the previously trained network to finetune on the real-acquired images, and
the impressive unmixing results can be obtained. Although the three methods can remove the
crosstalk from channel 2 into other channels, linear unmixing loses a lot of tissue structure
in channel 1, and LUMoS lacks some details in channel 3, while our method maintains the
structure of the cellular tissue well. These results show that our method can still maintain high
unmixing performance for samples with different morphologies by performing transfer learning
on real sample images. This demonstrates AutoUnmix does not need to retrain networks for real
experimental conditions or rely on reference spectra.

In order to establish the validity of our spectral unmixing approach, we acquire the typical
single-stain images corresponding to distinct channels for comparison purposes (Fig. S11).
These images effectively showcase the distinct morphological attributes of each structure and
function as reference to evaluate the accuracy of our unmixing method’s outputs. While our
method may not perfectly reconstruct all correct structures, it is noteworthy that AutoUnmix
outperforms the other two methods when compared against the reference images.
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Fig. 4. Unmixing results on real biological samples. a. Unmixing results on 3-channel
mouse cell samples exhibiting similar spectra and morphology to training data. Each column
is results of the three methods and each row represents different spectral channel. Scale
bar: 50µm b. Unmixing results of the AutoUnmix with and without transfer learning
on 4-channel mouse brain slice samples with different morphology. Scale bar: 30µm c.
Unmixing results on 3-channel mouse brain slice samples with different morphology and
emission spectra. Scale bar: 40µm.

4. Conclusion

In this work, we propose a new deep learning method for fluorescence spectral unmixing, termed
AutoUnmix, as an alternative flexible choice for separating mixed images. Our proposed method
designs an asymmetric autoencoder model that incorporates the process of spectral mixing and
unmixing as two stages in deep neural networks to simultaneously learn spectral characteristics
during this procedure. On simulated datasets with 3- and 4-color mixed images, we can achieve
SSIM of 0.99 and PSNR of 30+, which show great superiority over traditional linear unmixing
methods and machine learning-based LUMoS method.

Further, we demonstrate the unmixing performance of our AutoUnmix with the proposed
transfer learning framework. By fine-tuning the network on single real-acquired image, our
method successfully unmixes images on both real mouse cell samples and mouse brain slice
samples that have inconsistent morphology with training sets and largely different emission
spectra of labeling fluorophores from the theoretical spectra. Compared to the other two unmixing
methods, our method shows impressive unmixing performance and generalization ability. This
result highlights that we present a novel approach to address the issue that the ground truth of real
samples is not available and training images differ from real biological images. This also can be
attributed to the autoencoder architecture in AutoUnmix that is naturally applicable to network
training without ground truth and improves unmixing performance by iterative looping between
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the encoder and decoder. To some extent, our approach solves the problem that the independent
identically distribution assumption between synthetic data and real data is not satisfied. However,
it is noted that since our method does not learn morphological features during training, some
channels of real samples cannot be absolutely separated, which deserves further improvement in
subsequent research.

Finally, we aim to extend the application of our AutoUnmix to various unmixing imaging
modalities. Our transfer learning method can further adapt to different real imaging systems
and bio-samples labeled with different dyes, such as mRNA imaging [29–31], cell tracing [32],
fluorescent barcoding techniques [13,33], multidimensional cytometry [34] and sub-cellular
structures locations [35]. Moreover, our unmixing network architecture can be potentially used
in label-free detection of intracellular structures [21,36]. Our method may also perform well in
biomedical tasks such as virtual staining [37–39], as they also involve multi-spectral imaging
tasks. Additionally, our method can be combined with spectral phasor methods [17,40,41] to
achieve spectral unmixing while utilizing the computational efficiency in the Fourier space. We
can also explore replacing modules in our mixing network and unmixing network with more
efficient modules like vision transformer blocks [42,43] to better extract spatial features and
address deficiencies on unseen morphologies. Overall, we anticipate that our AutoUnmix will be
useful in medical imaging, microscopy imaging, remote sensing [44,45], and an even broader
range of computer vision tasks.
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